If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying -3t2 + 18t + 2 = 0 Reorder the terms: 2 + 18t + -3t2 = 0 Solving 2 + 18t + -3t2 = 0 Solving for variable 't'. Begin completing the square. Divide all terms by -3 the coefficient of the squared term: Divide each side by '-3'. -0.6666666667 + -6t + t2 = 0 Move the constant term to the right: Add '0.6666666667' to each side of the equation. -0.6666666667 + -6t + 0.6666666667 + t2 = 0 + 0.6666666667 Reorder the terms: -0.6666666667 + 0.6666666667 + -6t + t2 = 0 + 0.6666666667 Combine like terms: -0.6666666667 + 0.6666666667 = 0.0000000000 0.0000000000 + -6t + t2 = 0 + 0.6666666667 -6t + t2 = 0 + 0.6666666667 Combine like terms: 0 + 0.6666666667 = 0.6666666667 -6t + t2 = 0.6666666667 The t term is -6t. Take half its coefficient (-3). Square it (9) and add it to both sides. Add '9' to each side of the equation. -6t + 9 + t2 = 0.6666666667 + 9 Reorder the terms: 9 + -6t + t2 = 0.6666666667 + 9 Combine like terms: 0.6666666667 + 9 = 9.6666666667 9 + -6t + t2 = 9.6666666667 Factor a perfect square on the left side: (t + -3)(t + -3) = 9.6666666667 Calculate the square root of the right side: 3.109126351 Break this problem into two subproblems by setting (t + -3) equal to 3.109126351 and -3.109126351.Subproblem 1
t + -3 = 3.109126351 Simplifying t + -3 = 3.109126351 Reorder the terms: -3 + t = 3.109126351 Solving -3 + t = 3.109126351 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '3' to each side of the equation. -3 + 3 + t = 3.109126351 + 3 Combine like terms: -3 + 3 = 0 0 + t = 3.109126351 + 3 t = 3.109126351 + 3 Combine like terms: 3.109126351 + 3 = 6.109126351 t = 6.109126351 Simplifying t = 6.109126351Subproblem 2
t + -3 = -3.109126351 Simplifying t + -3 = -3.109126351 Reorder the terms: -3 + t = -3.109126351 Solving -3 + t = -3.109126351 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '3' to each side of the equation. -3 + 3 + t = -3.109126351 + 3 Combine like terms: -3 + 3 = 0 0 + t = -3.109126351 + 3 t = -3.109126351 + 3 Combine like terms: -3.109126351 + 3 = -0.109126351 t = -0.109126351 Simplifying t = -0.109126351Solution
The solution to the problem is based on the solutions from the subproblems. t = {6.109126351, -0.109126351}
| 4a+8b-9a-9b=0 | | 3x/11-9=3x | | y+6=-3(x-4) | | -7x-4-3x=2+4x-6 | | -3[2(x+4y)-(x-y)]=1 | | 4a-9a-9b+8b=0 | | 7t+2t= | | -6x-2+x=2x+3 | | 15x+4=30x+10 | | 15x-1=9x+4 | | p1v1/ti=p2v2/t2 | | -7-(2x+9)=11x-5(1-x) | | 2(4+3)=10x-2 | | 2/5(3-2x) | | 7(y-4)/4=-2y | | 3-14r+8r^2=0 | | 100[0.05(y+5)]= | | -(1+7s)-6(-7-s)=36 | | 10x-20=8x+40 | | 42=3/2x | | 15x=4.5 | | 5y+4=4 | | 5x-5=3x-15 | | 2(3x+1)=9x-34 | | -3a^2+5a-2=0 | | x+0.2x=3370 | | 7p-7=7p | | 31x=-6(185+4x) | | (-3x)10=(5x)*-8 | | 2.5(x+6)+1.5x=-8 | | (-3x)10=(5x)-8 | | R=p/i^2 |